skip to main content


Search for: All records

Creators/Authors contains: "Bevans, Benjamin D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The long-term goal of this work is to predict and control the microstructure evolution in metal additive manufacturing processes. In pursuit of this goal, we developed and applied an approach which combines physics-based thermal modeling with data-driven machine learning to predict two important microstructure-related characteristics, namely, the meltpool depth and primary dendritic arm spacing in Nickel Alloy 718 parts made using the laser powder bed fusion (LPBF) process. Microstructure characteristics are critical determinants of functional physical properties, e.g., yield strength and fatigue life. Currently, the microstructure of LPBF parts is optimized through a cumbersome build-and-characterize empirical approach. Rapid and accurate models for predicting microstructure evolution are therefore valuable to reduce process development time and achieve consistent properties. However, owing to their computational complexity, existing physics-based models for predicting the microstructure evolution are limited to a few layers, and are challenging to scale to practical parts. This paper addresses the aforementioned research gap via a novel physics and data integrated modeling approach. The approach consists of two steps. First, a rapid, part-level computational thermal model was used to predict the temperature distribution and cooling rate in the entire part before it was printed. Second, the foregoing physics-based thermal history quantifiers were used as inputs to a simple machine learning model (support vector machine) trained to predict the meltpool depth and primary dendritic arm spacing based on empirical materials characterization data. As an example of its efficacy, when tested on a separate set of samples from a different build, the approach predicted the primary dendritic arm spacing with root mean squared error ≈ 110 nm. This work thus presents an avenue for future physics-based optimization and control of microstructure evolution in LPBF. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. The objective of this work is to predict a type of thermal-induced process failure called recoater crash that occurs frequently during laser powder bed fusion (LPBF) additive manufacturing. Rapid and accurate thermomechanical simulations are valuable for LPBF practitioners to identify and correct potential issues in the part design and processing conditions that may cause recoater crashes. In this work, to predict the likelihood of a recoater crash (recoater contact or impact) we develop and apply a computationally efficient thermomechanical modeling approach based on graph theory. The accuracy and computational efficiency of the approach is demonstrated by comparison with both non-proprietary finite element analysis (Abaqus), and a proprietary LPBF simulation software (Autodesk Netfabb). Based on both numerical (verification) and experimental (validation) studies, the proposed approach is found to be 5 to 6 times faster than the non-proprietary finite element modeling and has the same order of computational time as a commercial simulation software (Netfabb) without sacrificing prediction accuracy. 
    more » « less